Lectures on Challenging Mathematics

Math Challenges 1

Geometry

Winter 2021

Zuming Feng

Ivan Borsenco
"Success is not final, failure is not fatal, it is the courage to continue that counts."
Winston Churchill (1874-1965)

I can see that without being excited, mathematics can look pointless and cold. The beauty of mathematics only shows itself to more patient followers.

Maryam Mirzakhani (1977-2017)

Contents

1 Geometry 2
1.1 Points, lines, and planes 2
1.2 Segments and rays (part 1) 4
1.3 Angles (part 1) 6
1.4 Segments and rays (part 2) 8
1.5 Angles (part 2) 9
1.6 Figures in space 11
1.7 Parallel lines (part 1) 12
1.8 Parallel lines (part 2) 14
1.9 Angles (part 3) 15
1.10 Parallel lines (part 3) 17

1.5 Angles (part 2)

1. Adjacent angles are two angles in a plane that have a common vertex and a common side but no common interior points. In the diagram below, angles $\angle B A D$ and $\angle C A D$ are adjacent.

Angle $\angle A O G$ is divided by rays $O B, O C, O D, O E, O F$ into six congruent angles. How many pairs of congruent adjacent angles are there?
2. Vertical angles is a pair of non-adjacent angles formed by the intersection of two straight lines. When two lines intersect they form two pairs of vertical angles. Vertical angles are congruent. For example, in the diagram below $\angle A P B=\angle C P D$ and $\angle A P D=\angle B P C$.

Five lines intersect in one point. Given that five alternating non-adjacent angles are congruent, as shown in the diagram above, find the measure of each of them.
3. An angle of measure between 0° and 90° is called an acute angle. An angle of measure between 90° and 180° is called an obtuse angle.
An acute angle α and an obtuse angle β are prime numbers. If $\alpha+\beta=112^{\circ}$, find all possible pairs (α, β) that satisfy the conditions of the problem.
4. Ray $O B$ is the angle-bisector of $\angle A O C$, whose measure is 108°. Ray $O P$ is the angle-bisector of $\angle A O B$ and ray $O Q$ is the angle-bisector of $\angle P O C$. Find the measure of $\angle B O Q$.
5. Consider a right angle $\angle A O E$ and rays $O B, O C$, and $O D$ dividing this angle into four angles. It is given that $O B$ is the angle-bisector of $\angle A O C$ and $O D$ is the angle-bisector of $\angle C O E$.
(a) Find $\angle B O D$ assuming $\angle A O C=40^{\circ}$.
(b) Find $\angle B O D$ assuming $\angle A O C=58^{\circ}$.
(c) Find $\angle B O D$ choosing any size for $\angle A O C$.

1.8 Parallel lines (part 2)

1. Points M and N are lying on the sides $A B$ and $A C$ of triangle $A B C$ such that $M N$ is parallel to $B C$. Given that $\angle B=74^{\circ}$ and $\angle A N M=38^{\circ}$, find $\angle A$.

2. In the diagram above we have three parallel rays and three congruent angles that are marked. Find the measure of each of these angles.
3. In each of the diagrams extend segments to find the unknown angle x.

4. A trapezoid is quadrilateral with exactly one pair of parallel sides. A trapezoid has a 35 -degree angle and a 55 -degree angle. What are the other angles? What if it has a 75 -degree angle and a 105 -degree angle?
5. A parallelogram is a quadrilateral that has two pairs of parallel sides. Explain why the opposite angles in a parallelogram are congruent.
